
4.1

Solution
a. We are given that λ = 550 nm , m = 2 , and θ2 = 45.0° . Solving the equation D sin θ = mλ for D and

substituting known values gives

D = mλ
sin θ2

= 2(550 nm)
sin 45.0° = 1100 × 10−9 m

0.707 = 1.56 × 10−6 m.

b. Solving the equation D sin θ = mλ for sin θ1 and substituting the known values gives

sin θ1 = mλ
D = 1(550 × 10−9 m)

1.56 × 10−6 m
.

Thus the angle θ1 is

θ1 = sin−1 0.354 = 20.7°.

Significance

We see that the slit is narrow (it is only a few times greater than the wavelength of light). This is consistent with
the fact that light must interact with an object comparable in size to its wavelength in order to exhibit significant
wave effects such as this single-slit diffraction pattern. We also see that the central maximum extends 20.7° on

either side of the original beam, for a width of about 41° . The angle between the first and second minima is only

about 24° (45.0° − 20.7°) . Thus, the second maximum is only about half as wide as the central maximum.

Check Your Understanding Suppose the slit width in Example 4.1 is increased to 1.8 × 10−6 m.
What are the new angular positions for the first, second, and third minima? Would a fourth minimum exist?

4.2 | Intensity in Single-Slit Diffraction

Learning Objectives

By the end of this section, you will be able to:

• Calculate the intensity relative to the central maximum of the single-slit diffraction peaks

• Calculate the intensity relative to the central maximum of an arbitrary point on the screen

To calculate the intensity of the diffraction pattern, we follow the phasor method used for calculations with ac circuits in
Alternating-Current Circuits (http://cnx.org/content/m58485/latest/) . If we consider that there are N Huygens
sources across the slit shown in Figure 4.4, with each source separated by a distance D/N from its adjacent neighbors,
the path difference between waves from adjacent sources reaching the arbitrary point P on the screen is (D/N) sin θ. This

distance is equivalent to a phase difference of (2πD/λN) sin θ. The phasor diagram for the waves arriving at the point

whose angular position is θ is shown in Figure 4.7. The amplitude of the phasor for each Huygens wavelet is ΔE0, the

amplitude of the resultant phasor is E, and the phase difference between the wavelets from the first and the last sources is

ϕ = ⎛
⎝
2π
λ

⎞
⎠D sin θ.

With N → ∞ , the phasor diagram approaches a circular arc of length NΔE0 and radius r. Since the length of the arc

is NΔE0 for any ϕ , the radius r of the arc must decrease as ϕ increases (or equivalently, as the phasors form tighter

spirals).
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Figure 4.7 (a) Phasor diagram corresponding to the angular
position θ in the single-slit diffraction pattern. The phase

difference between the wavelets from the first and last sources is
ϕ = (2π/λ)D sin θ . (b) The geometry of the phasor diagram.

The phasor diagram for ϕ = 0 (the center of the diffraction pattern) is shown in Figure 4.8(a) using N = 30 . In this

case, the phasors are laid end to end in a straight line of length NΔE0, the radius r goes to infinity, and the resultant

has its maximum value E = NΔE0. The intensity of the light can be obtained using the relation I = 1
2cε0 E2 from

Electromagnetic Waves (http://cnx.org/content/m58495/latest/) . The intensity of the maximum is then

I0 = 1
2cε0 (NΔE0)2 = 1

2µ0 c
⎛
⎝NΔE0

⎞
⎠
2,

where ε0 = 1/µ0 c2 . The phasor diagrams for the first two zeros of the diffraction pattern are shown in parts (b) and (d) of

the figure. In both cases, the phasors add to zero, after rotating through ϕ = 2π rad for m = 1 and 4π rad for m = 2 .

Figure 4.8 Phasor diagrams (with 30 phasors) for various points on the single-slit diffraction
pattern. Multiple rotations around a given circle have been separated slightly so that the phasors can
be seen. (a) Central maximum, (b) first minimum, (c) first maximum beyond central maximum, (d)
second minimum, and (e) second maximum beyond central maximum.

The next two maxima beyond the central maxima are represented by the phasor diagrams of parts (c) and (e). In part (c),
the phasors have rotated through ϕ = 3π rad and have formed a resultant phasor of magnitude E1 . The length of the arc

formed by the phasors is NΔE0. Since this corresponds to 1.5 rotations around a circle of diameter E1 , we have

3
2πE1 ≈ NΔE0,
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so

E1 = 2NΔE0
3π

and

I1 = 1
2µ0 cE1

2 = 4(NΔE0)2

⎛
⎝9π2⎞

⎠
⎛
⎝2µ0 c⎞

⎠

≈ 0.045I0,

where

I0 = (NΔE0)2

2µ0 c .

In part (e), the phasors have rotated through ϕ = 5π rad, corresponding to 2.5 rotations around a circle of diameter E2

and arc length NΔE0. This results in I2 ≈ 0.016I0 . The proof is left as an exercise for the student (Exercise 4.119).

These two maxima actually correspond to values of ϕ slightly less than 3π rad and 5π rad. Since the total length of the

arc of the phasor diagram is always NΔE0, the radius of the arc decreases as ϕ increases. As a result, E1 and E2 turn

out to be slightly larger for arcs that have not quite curled through 3π rad and 5π rad, respectively. The exact values of ϕ
for the maxima are investigated in Exercise 4.120. In solving that problem, you will find that they are less than, but very
close to, ϕ = 3π, 5π, 7π, … rad.

To calculate the intensity at an arbitrary point P on the screen, we return to the phasor diagram of Figure 4.7. Since the arc
subtends an angle ϕ at the center of the circle,

NΔE0 = rϕ

and

sin ⎛
⎝
ϕ
2

⎞
⎠ = E

2r .

where E is the amplitude of the resultant field. Solving the second equation for E and then substituting r from the first
equation, we find

E = 2r sin ϕ
2 = 2NΔEo

ϕ sin ϕ
2 .

Now defining

(4.2)β = ϕ
2 = πD sin θ

λ

we obtain

(4.3)E = NΔE0
sin β

β

This equation relates the amplitude of the resultant field at any point in the diffraction pattern to the amplitude NΔE0 at

the central maximum. The intensity is proportional to the square of the amplitude, so
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(4.4)
I = I0

⎛
⎝
sin β

β
⎞
⎠

2

where I0 = ⎛
⎝NΔE0

⎞
⎠
2/2µ0 c is the intensity at the center of the pattern.

For the central maximum, ϕ = 0 , β is also zero and we see from l’Hôpital’s rule that limβ → 0
⎛
⎝sin β/β⎞

⎠ = 1, so that

limϕ → 0 I = I0. For the next maximum, ϕ = 3π rad, we have β = 3π/2 rad and when substituted into Equation 4.4,

it yields

I1 = I0
⎛
⎝
sin 3π/2

3π/2
⎞
⎠

2
≈ 0.045I0,

in agreement with what we found earlier in this section using the diameters and circumferences of phasor diagrams.
Substituting ϕ = 5π rad into Equation 4.4 yields a similar result for I2 .

A plot of Equation 4.4 is shown in Figure 4.9 and directly below it is a photograph of an actual diffraction pattern.
Notice that the central peak is much brighter than the others, and that the zeros of the pattern are located at those points
where sin β = 0, which occurs when β = mπ rad. This corresponds to

πD sin θ
λ = mπ,

or

D sin θ = mλ,

which is Equation 4.1.

Figure 4.9 (a) The calculated intensity distribution of a single-slit diffraction pattern. (b) The
actual diffraction pattern.
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4.2

Example 4.2

Intensity in Single-Slit Diffraction

Light of wavelength 550 nm passes through a slit of width 2.00 µm and produces a diffraction pattern similar

to that shown in Figure 4.9. (a) Find the locations of the first two minima in terms of the angle from the central
maximum and (b) determine the intensity relative to the central maximum at a point halfway between these two
minima.

Strategy

The minima are given by Equation 4.1, D sin θ = mλ . The first two minima are for m = 1 and m = 2.
Equation 4.4 and Equation 4.2 can be used to determine the intensity once the angle has been worked out.

Solution

a. Solving Equation 4.1 for θ gives us θm = sin−1(mλ/D), so that

θ1 = sin−1
⎛

⎝
⎜
(+1)⎛

⎝550 × 10−9 m⎞
⎠

2.00 × 10−6 m

⎞

⎠
⎟ = + 16.0°

and

θ2 = sin−1
⎛

⎝
⎜
(+2)⎛

⎝550 × 10−9 m⎞
⎠

2.00 × 10−6 m

⎞

⎠
⎟ = + 33.4°.

b. The halfway point between θ1 and θ2 is

θ = ⎛
⎝θ1 + θ2

⎞
⎠/2 = (16.0° + 33.4°)/2 = 24.7°.

Equation 4.2 gives

β = πD sin θ
λ =

π⎛
⎝2.00 × 10−6 m⎞

⎠ sin(24.7°)
⎛
⎝550 × 10−9 m⎞

⎠
= 1.52π or 4.77 rad.

From Equation 4.4, we can calculate

I
Io

= ⎛
⎝
sin β

β
⎞
⎠

2
= ⎛

⎝
sin (4.77)

4.77
⎞
⎠

2
= ⎛

⎝
−0.9985

4.77
⎞
⎠

2
= 0.044.

Significance

This position, halfway between two minima, is very close to the location of the maximum, expected near
β = 3π/2, or 1.5π .

Check Your Understanding For the experiment in Example 4.2, at what angle from the center is the
third maximum and what is its intensity relative to the central maximum?

If the slit width D is varied, the intensity distribution changes, as illustrated in Figure 4.10. The central peak is distributed
over the region from sin θ = −λ/D to sin θ = + λ/D . For small θ , this corresponds to an angular width Δθ ≈ 2λ/D.
Hence, an increase in the slit width results in a decrease in the width of the central peak. For a slit with D ≫ λ, the

central peak is very sharp, whereas if D ≈ λ , it becomes quite broad.

154 Chapter 4 | Diffraction

This OpenStax book is available for free at http://cnx.org/content/col12067/1.9



Figure 4.10 Single-slit diffraction patterns for various slit widths. As the slit width D increases from D = λ to 5λ and then to

10λ , the width of the central peak decreases as the angles for the first minima decrease as predicted by Equation 4.1.

A diffraction experiment in optics can require a lot of preparation but this simulation
(https://openstaxcollege.org/l/21diffrexpoptsi) by Andrew Duffy offers not only a quick set up but also the
ability to change the slit width instantly. Run the simulation and select “Single slit.” You can adjust the slit width
and see the effect on the diffraction pattern on a screen and as a graph.

4.3 | Double-Slit Diffraction

Learning Objectives

By the end of this section, you will be able to:

• Describe the combined effect of interference and diffraction with two slits, each with finite width

• Determine the relative intensities of interference fringes within a diffraction pattern

• Identify missing orders, if any

When we studied interference in Young’s double-slit experiment, we ignored the diffraction effect in each slit. We assumed
that the slits were so narrow that on the screen you saw only the interference of light from just two point sources. If the slit
is smaller than the wavelength, then Figure 4.10(a) shows that there is just a spreading of light and no peaks or troughs
on the screen. Therefore, it was reasonable to leave out the diffraction effect in that chapter. However, if you make the slit
wider, Figure 4.10(b) and (c) show that you cannot ignore diffraction. In this section, we study the complications to the
double-slit experiment that arise when you also need to take into account the diffraction effect of each slit.

To calculate the diffraction pattern for two (or any number of) slits, we need to generalize the method we just used for a
single slit. That is, across each slit, we place a uniform distribution of point sources that radiate Huygens wavelets, and
then we sum the wavelets from all the slits. This gives the intensity at any point on the screen. Although the details of that
calculation can be complicated, the final result is quite simple:

Two-Slit Diffraction Pattern

The diffraction pattern of two slits of width D that are separated by a distance d is the interference pattern of two point
sources separated by d multiplied by the diffraction pattern of a slit of width D.

In other words, the locations of the interference fringes are given by the equation d sin θ = mλ , the same as when we

considered the slits to be point sources, but the intensities of the fringes are now reduced by diffraction effects, according
to Equation 4.4. [Note that in the chapter on interference, we wrote d sin θ = mλ and used the integer m to refer to

interference fringes. Equation 4.1 also uses m, but this time to refer to diffraction minima. If both equations are used
simultaneously, it is good practice to use a different variable (such as n) for one of these integers in order to keep them
distinct.]

Interference and diffraction effects operate simultaneously and generally produce minima at different angles. This gives rise
to a complicated pattern on the screen, in which some of the maxima of interference from the two slits are missing if the
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